Activation of PKR by short stem-loop RNAs containing single-stranded arms.
نویسندگان
چکیده
Protein kinase R (PKR) is a central component of the innate immunity antiviral pathway and is activated by dsRNA. PKR contains a C-terminal kinase domain and two tandem dsRNA binding domains. In the canonical activation model, binding of multiple PKR monomers to dsRNA enhances dimerization of the kinase domain, leading to enzymatic activation. A minimal dsRNA of 30 bp is required for activation. However, short (∼15 bp) stem-loop RNAs containing flanking single-stranded tails (ss-dsRNAs) are capable of activating PKR. Activation was reported to require a 5'-triphosphate. Here, we characterize the structural features of ss-dsRNAs that contribute to activation. We have designed a model ss-dsRNA containing 15-nt single-stranded tails and a 15-bp stem and made systematic truncations of the tail and stem regions. Autophosphorylation assays and analytical ultracentrifugation experiments were used to correlate activation and binding affinity. PKR activation requires both 5'- and 3'-single-stranded tails but the triphosphate is dispensable. Activation potency and binding affinity decrease as the ssRNA tails are truncated and activation is abolished in cases where the binding affinity is strongly reduced. These results indicate that the single-stranded regions bind to PKR and support a model where ss-dsRNA induced dimerization is required but not sufficient to activate the kinase. The length of the duplex regions in several natural RNA activators of PKR is below the minimum of 30 bp required for activation and similar interactions with single-stranded regions may contribute to PKR activation in these cases.
منابع مشابه
Mechanistic characterization of the 5'-triphosphate-dependent activation of PKR: lack of 5'-end nucleobase specificity, evidence for a distinct triphosphate binding site, and a critical role for the dsRBD.
The protein kinase PKR is activated by RNA to phosphorylate eIF-2α, inhibiting translation initiation. Long dsRNA activates PKR via interactions with the dsRNA-binding domain (dsRBD). Weakly structured RNA also activates PKR and does so in a 5'-triphosphate (ppp)-dependent fashion, however relatively little is known about this pathway. We used a mutant T7 RNA polymerase to incorporate all four ...
متن کاملافزایش بیان اختصاصی ژن Cdk9 بوسیله microRNA-1 بالغ تک رشته در سلول های فیبروبلاست
Abstract Background: MicroRNAs (miRNAs) are endogenous, non-coding short RNAs (~22 nt) that can downregulate gene expression by translational repression, mRNA degradation, or transcriptional repression. miRNA misregulation has been implicated in pathogenic alterations such as cancer. In order to investigate microRNA functions in gene regulation and/or to modulate their expression in pathogenic...
متن کامل5'-triphosphate-dependent activation of PKR by RNAs with short stem-loops.
Molecular patterns in pathogenic RNAs can be recognized by the innate immune system, and a component of this response is the interferon-induced enzyme RNA-activated protein kinase (PKR). The major activators of PKR have been proposed to be long double-stranded RNAs. We report that RNAs with very limited secondary structures activate PKR in a 5'-triphosphate-dependent fashion in vitro and in viv...
متن کاملStructural analysis of adenovirus VAI RNA defines the mechanism of inhibition of PKR.
Protein kinase R (PKR) is activated by dsRNA produced during virus replication and plays a major role in the innate immunity response to virus infection. In response, viruses have evolved multiple strategies to evade PKR. Adenovirus virus-associated RNA-I (VAI) is a short, noncoding transcript that functions as an RNA decoy to sequester PKR in an inactive state. VAI consists of an apical stem-l...
متن کاملPotential Alu function: regulation of the activity of double-stranded RNA-activated kinase PKR.
Cell stress, viral infection, and translational inhibition increase the abundance of human Alu RNA, suggesting that the level of these transcripts is sensitive to the translational state of the cell. To determine whether Alu RNA functions in translational homeostasis, we investigated its role in the regulation of double-stranded RNA-activated kinase PKR. We found that overexpression of Alu RNA ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- RNA
دوره 22 7 شماره
صفحات -
تاریخ انتشار 2016